skip to main content


Search for: All records

Creators/Authors contains: "Strickland, W Christopher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Gorgonians, including sea fans, are soft corals well known for their elaborate branching structure and how they sway in the ocean. This branching structure can modify environmental flows to be beneficial for feeding in a particular range of velocities and, presumably, for a particular size of prey. As water moves through the elaborate branches, it is slowed, and recirculation zones can form downstream of the colony. At the smaller scale, individual polyps that emerge from the branches expand their tentacles, further slowing the flow. At the smallest scale, the tentacles are covered in tiny pinnules where exchange occurs. In this paper, we quantified the gap to diameter ratios for various gorgonians at the scale of the branches, the polyp tentacles and the pinnules. We then used computational fluid dynamics to determine the flow patterns at all three levels of branching. We quantified the leakiness between the branches, tentacles and pinnules over the biologically relevant range of Reynolds numbers and gap-to-diameter ratios, and found that the branches and tentacles can act as either leaky rakes or solid plates depending upon these dimensionless parameters. The pinnules, in contrast, mostly impede the flow. Using an agent-based modeling framework, we quantified plankton capture as a function of the gap-to-diameter ratio of the branches and the Reynolds number. We found that the capture rate depends critically on both morphology and Reynolds number. The results of the study have implications for how gorgonians modify ambient flows for efficient feeding and exchange.

     
    more » « less
  2. null (Ed.)
  3. Tarnita, Corina E. (Ed.)
  4. Aslan, Claire (Ed.)
    Abstract The distribution and abundance of plants across the world depends in part on their ability to move, which is commonly characterized by a dispersal kernel. For seeds, the total dispersal kernel (TDK) describes the combined influence of all primary, secondary and higher-order dispersal vectors on the overall dispersal kernel for a plant individual, population, species or community. Understanding the role of each vector within the TDK, and their combined influence on the TDK, is critically important for being able to predict plant responses to a changing biotic or abiotic environment. In addition, fully characterizing the TDK by including all vectors may affect predictions of population spread. Here, we review existing research on the TDK and discuss advances in empirical, conceptual modelling and statistical approaches that will facilitate broader application. The concept is simple, but few examples of well-characterized TDKs exist. We find that significant empirical challenges exist, as many studies do not account for all dispersal vectors (e.g. gravity, higher-order dispersal vectors), inadequately measure or estimate long-distance dispersal resulting from multiple vectors and/or neglect spatial heterogeneity and context dependence. Existing mathematical and conceptual modelling approaches and statistical methods allow fitting individual dispersal kernels and combining them to form a TDK; these will perform best if robust prior information is available. We recommend a modelling cycle to parameterize TDKs, where empirical data inform models, which in turn inform additional data collection. Finally, we recommend that the TDK concept be extended to account for not only where seeds land, but also how that location affects the likelihood of establishing and producing a reproductive adult, i.e. the total effective dispersal kernel. 
    more » « less